National Semiconductor

LM556/LM556C Dual Timer

General Description

The LM556 Dual timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. The 556 is a dual 555. Timing is provided by an external resistor and capacitor for each timing function. The two timers operate independently of each other sharing only V_{CC} and ground. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200 mA.

Features

- Direct replacement for SE556/NE556
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Replaces two 555 timers

- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per °C
- Normally on and normally off output

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator

©1995 National Semiconductor Corporation TL/H/7852

RRD-B30M115/Printed in U. S. A.

February 1995

LM556/LM556C Dual Timer

Absolute Maximum R	atings					
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Storage Temperature Range Soldering Information Dual-In-Line Package	-65°C to +150°C			
Supply Voltage Power Dissipation (Note 1) LM556J, LM556CJ LM556CN	+ 18V 1785 mW 1620 mW	Soldering (10 seconds) Small Outline Package Vapor phase (60 seconds) Infrared (15 seconds)	260°C 215°C 220°C			
Operating Temperature Ranges 0°C to + 70°C LM556C 0°C to + 70°C LM556 -55°C to + 125°C		See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering sur- face mount devices.				

Parameter	Conditions	LM556			LM556C			Unite
		Min	Тур	Max	Min	Тур	Max	
Supply Voltage		4.5		18	4.5		16	V
Supply Current (Each Timer Section)	$V_{CC} = 5V, R_L = \infty$ $V_{CC} = 15V, R_L = \infty$ (Low State) (Note 2)		3 10	5 11		3 10	6 14	mA mA
Timing Error, Monostable Initial Accuracy Drift with Temperature Accuracy over Temperature Drift with Supply	${\sf R}_{A}=$ 1k to 100 k $\Omega,$ $C=$ 0.1 $\mu{\sf F},$ (Note 3)		0.5 30 1.5 0.05			0.75 50 1.5 0.1		% ppm/°C % %/V
Timing Error, Astable Initial Accuracy Drift with Temperature Accuracy over Temperature Drift with Supply	$R_A, R_B = 1$ k to 100 kΩ, C = 0.1 μF, (Note 3)		1.5 90 2.5 0.15			2.25 150 3.0 0.30		% ppm/°C % %/V
Trigger Voltage	$V_{CC} = 15V$ $V_{CC} = 5V$	4.8 1.45	5 1.67	5.2 1.9	4.5 1.25	5 1.67	5.5 2.0	v v
Trigger Current			0.1	0.5		0.2	1.0	μΑ
Reset Voltage	(Note 4)	0.4	0.5	1	0.4	0.5	1	V
Reset Current			0.1	0.4		0.1	0.6	mA
Threshold Current	$V_{TH} = V$ -Control (Note 5) $V_{TH} = 11.2V$		0.03	0.1 250		0.03	0.1 250	μA nA
Control Voltage Level and Threshold Voltage	$V_{CC} = 15V$ $V_{CC} = 5V$	9.6 2.9	10 3.33	10.4 3.8	9 2.6	10 3.33	11 4	V V
Pin 1, 13 Leakage Output High			1	100		1	100	nA
Pin 1, 13 Sat Output Low Output Low	(Note 6) $V_{CC} = 15V, I = 15 \text{ mA}$ $V_{CC} = 4.5V, I = 4.5 \text{ mA}$		150 70	240 100		180 80	300 200	mV mV

Parameter	Conditions	LM556			LM556C			Unite
		Min	Тур	Max	Min	Тур	Max	
Output Voltage Drop (Low)	$V_{CC} = 15V$							
	I _{SINK} = 10 mA		0.1	0.15		0.1	0.25	V
	I _{SINK} = 50 mA		0.4	0.5		0.4	0.75	V
	I _{SINK} = 100 mA		2	2.25		2	2.75	V
	I _{SINK} = 200 mA		2.5			2.5		V
	$V_{CC} = 5V$							
	I _{SINK} = 8 mA		0.1	0.25				V
	I _{SINK} = 5 mA					0.25	0.35	V
Output Voltage Drop (High)	$I_{SOUBCE} = 200 \text{ mA}, V_{CC} = 15V$		12.5			12.5		v
	$I_{SOURCE} = 100 \text{ mA}, V_{CC} = 15 \text{V}$	13	13.3		12.75	13.3		V
	$V_{CC} = 5V$	3	3.3		2.75	3.3		V
Rise Time of Output			100			100		ns
Fall Time of Output			100			100		ns
Matching Characteristics	(Note 7)							
Initial Timing Accuracy			0.05	0.2		0.1	2.0	%
Timing Drift with Temperature			±10			±10		ppm/°
Drift with Supply Voltage			0.1	0.2		0.2	0.5	%/V

Note 1: For operating at elevated temperatures the device must be derated based on a +150°C maximum junction temperature and a thermal resistance of 70°C/W (Ceramic), 77°C/W (Plastic DIP) and 110°C/W (SO-14 Narrow).

Note 2: Supply current when output high typically 1 mA less at V_{CC} = 5V.

Note 3: Tested at $V_{CC}\,=\,5V$ and $V_{CC}\,=\,15V.$

Note 4: As reset voltage lowers, timing is inhibited and then the output goes low.

Note 5: This will determine the maximum value of R_A + R_B for 15V operation. The maximum total (R_A + R_B) is 20 M Ω .

Note 6: No protection against excessive pin 1, 13 current is necessary providing the package dissipation rating will not be exceeded.

Note 7: Matching characteristics refer to the difference between performance characteristics of each timer section.

Note 8: Refer to RETS556X drawing for specifications of military LM556J version.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.